Landscape diversity, food-web interactions, and the rapid evolution of pea aphids to parasitism

NSF/NASA Dimensions of Biodiversity

2013-2018

Anthony R. Ives, UW-Madison Jason P. Harmon, North Dakota State University Kerry M. Oliver, University of Georgia Volker C. Radeloff, SILVIS Lab, UW-Madison Likai Zhu, SILVIS Lab, UW-Madison

Landscape diversity, food-web interactions, and the rapid evolution of pea aphids to parasitism

NSF/NASA Dimensions of

2013-2018

Anthony R. Ives, UW-Madison Jason P. Harmon, North Dakota State Kerry M. Oliver, University of Georgi Volker C. Radeloff, SILVIS Lab, UW-N Likai Zhu, SILVIS Lab, UW-Madison

How does global change affect food webs?

- I. Landscape homogenization
- II. Nighttime lights and warming
- III. Global warming in winter

Landscape homogenization and synchrony

What is the effect of synchronous vs. asynchronous harvesting?

Simulated experiment for susceptible aphids

Experiment

Contrast synchronous vs. asynchronous harvesting

Augment natural populations with 50% resistant (*H. defensa*) and 50% susceptible clones

Augment natural populations of parasitoids to ensure at least moderate parasitism

spatio-temporal variability
ecological dynamics
evolutionary dynamics

Ecological-evolutionary dynamics

Spatially diverse agricultural landscape

Arlington Research Station

STARFM: Landsat + MODIS

Spatially diverse agricultural landscape

Likai Zhu

STARFM: Landsat + MODIS

Broad-scale view of disturbances

Broad-scale view of disturbances

- I. Landscape homogenization
- II. Nighttime lights and warming
- III. Global warming in winter

Nighttime lights and warming

Nighttime lights and warming

Visual predator

C7 Visual hunter

Cmac Hunts in the dark

Nighttime lights vs. nighttime warming in US croplands

- I. Landscape homogenization
- II. Nighttime lights and warming
- III. Global warming in winter

Winter warming

Day

Less snow reduces parasitism and increases aphid density

Snow cover (MODIS)

Frozen ground (AMSR-E)

Frozen ground with no snow

Characterizing global patterns of frozen ground with and without snow cover with AMSR-E and MODIS satellite data products

Likai Zhu¹, Volker C. Radeloff¹, and Anthony R. Ives²

¹SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, USA; ²Department of Zoology, University of Wisconsin-Madison, USA

Introduction

- Whether frozen ground is covered by snow greatly affects biotic responses to climate change because the subnivium can provide an insulated and thermally stable refugium
- Satellite data characterizing of freeze/thaw cycles and snow cover are available, but have not been combined to map the subnivium

Goal

To characterize global patterns of frozen ground with or without snow in order to provide a baseline to assess the effects of future winter climate change on organisms that overwinter

Data and methods

Data

- NASA MEaSUREs Global Record of Daily Landscape Freeze/Thaw Status data from AMSR-E: 2000-'12
- 8-day MODIS Snow Cover product (MOD10A2) from 2000-'12

Methods

The start of the frozen season: the middle day of the first 15 consecutive days for which at least 8 days were frozen The end of the frozen season: the middle day the last 15 consecutive days for which at least 8 days were thawed The length of the frozen season: the period between the start and end of the frozen season

Global patterns of D_{ws} and D_{wos}

Fig. 1 Global pattern of the mean length of the snow season (Dw., 2000-12). The Northern Hemisphere accounted for about 97% of all snow covered ground. The longest Dw. occurred in mountainous regions and high latitudes.

Fig. 2 Global pattern of the mean length of the frozen season (2000-'12). The pattern was similar to that of the Down which indicated that the Down became longer with an increase in the frozen season duration.

Fig. 3 Global pattern of the mean length of uncovered frozen ground (Dmay, 2000-12). Cold constrained areas were at middle latitudes even though the frozen season was shorter there than that at high latitudes.

We calculated the mean \underline{D}_{MS} and \underline{D}_{MS} in one-degree bins of latitude. \underline{D}_{MS} increased with latitudes (Fig. 4a). \underline{D}_{MS} was shorter in Europe than that in Northern America and Asia. In the Northern Hemisphere, the \underline{D}_{MS} peaked at about 35 °N (Fig. 4b)

Fig. 4 Variations of (a) D_{ms} and (b) D_{ms} by latitude. We smoothed the data with a local polynomial regression fit.

Global pattern of Dws percentage

Fig. 5 Global pattern of the percentage of Dwg (Dwg divided by the sum of Dwg and Dwg). The longest Dwg mainly occurred at the mountainous regions and high latitudes.

Temporal variability of D_{ws} and D_{wos}

Fig. 6 Global pattern of the coefficient of variation (CV) of D_{ws}. The temporal variability of D_{ms} was lower at higher latitudes.

Fig. 7 Global pattern of the CV of Dww. The temporal variability of Dwws was greater at higher latitudes.

Discussion and conclusions

- We developed a 500-m resolution dataset for 2000-'12 that captured global patterns of snow-covered and uncovered frozen ground
- The mid-latitude areas were functionally colder than either northern or southern latitudes due to more days of uncovered frozen ground
- The Down at high latitudes may be more sensitive to climate change because of its shorter duration and greater temporal variability
- Climate warming may result in a counterintuitive trend of large areas in the north becoming functionally colder as snow cover diminishes

Contact information

Likaj Zhu Department of Forest and Wildlife Ecology University of Wisconsin-Madison Madison, WI 53706

http://silvis.forest.wisc.edu

Acknowledgements

- I. Landscape homogenization
- II. Nighttime lights and warming
- III. Global warming in winter

- I. Homogenization and synchronous mowing disrupts predator-prey cycles, and evolutionary dynamics
- II. Interaction of nighttime lights and warming gives visual predators an unpredicted edge
- III. Winter warming makes mid-latitudes functionally colder, preventing the overwintering of parasitoids wasps

Theory Field Remote sensing

Theory Field Remote sensing

Loose scaling between experiments and satellite data can be both fruitful and fun!

